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Abstract
End-to-end dialogue response generation
models learn dialogue state tracking, dialogue
management, and natural language generation
at the same time and through the same
training signal. These models scale better
than traditional modular architectures as they
do not require much annotation. Despite
significant advances, these models, often built
using Recurrent Neural Networks (RNNs),
exhibit deficiencies such as repetition, incon-
sistency, and low task-completion rates. To
understand some of these issues more deeply,
this paper investigates the representations
learned by RNNs trained on dialogue data.
We highlight the problem of state aliasing,
which entails conflating two or more distinct
states in the representation space. We show
empirically that state aliasing often occurs
when encoder-decoder RNNs are trained via
maximum likelihood or policy gradients.
We propose to augment the training signal
with information about the future to force
the latent representations of the RNNs to
hold sufficient information for predicting the
future. Specifically, we train encoder-decoder
RNNs to predict both the next utterance as
well as a feature vector that represents the
expected dialogue future. We draw inspiration
from the Structured-Classification Inverse
Reinforcement Learning (SCIRL, Klein et al.,
2012) algorithm to compute this feature
vector. In experiments on a generated dataset
of text-based games, the augmented training
signal mitigates state aliasing and improves
model performance significantly.

1 Introduction

Dialogue response generation (DRG) can be
framed as a reinforcement learning problem where
the actions are words or structured sequences of
words. Much recent work has adopted the for-
mer framing, and has proposed data-driven train-
ing of DRG models in 2 steps: first, train the

model to output responses using the maximum-
likelihood objective, via teacher forcing; sec-
ond, continue training with a distinct, possibly
non-differentiable objective (e.g., maximizing the
BLEU score) using policy-gradient methods (Pap-
ineni et al., 2002; Ranzato et al., 2016; Bahdanau
et al., 2017; Strub et al., 2017; Narayan et al.,
2018; Wu et al., 2018).

Encoder-decoder models based on recurrent
neural networks now set the state of the art in
DRG, but still exhibit deficiencies like inconsis-
tency, poor syntax, and repetition. For exam-
ple, they tend to repeat the same sentences in-
appropriately within a dialogue or across dia-
logues. This has been observed in both goal-
oriented and general-purpose conversational set-
tings (Das et al., 2017; Strub et al., 2017; Li
et al., 2016; Holtzman et al., 2019). Several re-
cent works have focused on improving the decod-
ing mechanism of such models (Bahdanau et al.,
2017; Wiseman and Rush, 2016; Wu et al., 2018;
Holtzman et al., 2019). In this paper, we take the
complimentary approach and investigate the rep-
resentations learned by the encoder. We hypoth-
esize that one cause for repetition is state alias-
ing, which entails conflating two or more distinct
states in the representation space. Recent work has
shown that an RNN encoder’s hidden representa-
tions of two different dialogue contexts may be
very similar if the utterances following these con-
texts are the same (El Asri and Trischler, 2019). In
other words, when the immediate outputs are the
same, the encoder may learn to represent the in-
puts similarly. This was demonstrated in training
end-to-end dialogue models with policy gradient
algorithms and we investigate whether this hap-
pens with other training settings and in particular
in the maximum likelihood setting.

1Work done at Microsoft Research.



Figure 1: Retrieval-based dialogue response generation
model trained on text-based games.

We train a retrieval model and a generative
model with a recurrent encoder and decoder. Our
experiments suggest that state aliasing also oc-
curs in MLE training in both settings. We go on
to propose a solution to state aliasing based on
inverse reinforcement learning, which forces the
model to learn representations that depend less on
the next utterance and more on the expected fu-
ture dialogue trajectory. We adapt the Structured-
Classification Inverse Reinforcement Learning al-
gorithm (SCIRL, Klein et al., 2012) to compute a
feature vector representing an expectation of the
dialogue future and train models to predict this
feature vector. SCIRL is a simple inverse rein-
forcement learning algorithm with strong theoret-
ical guarantees and which does not require know-
ing the transition dynamics of the environment nor
having access to a simulator of the environment.
With this approach, we show significant improve-
ment on a dataset of generated text-based games.

2 Background: State Aliasing in RNNs
Trained with Policy Gradient Methods

2.1 Definition

In this section, we define the state aliasing prob-
lem and summarize the main results from El Asri
and Trischler (2019), which we build upon. This
also serves to introduce the experimental setting
and several components of the model we use in
our experiments.

We consider two states si and sj to be ε-aliased
by a model M , for which ||M(s)|| ≤ n ∀s, when
the Euclidean distance between the representa-
tions of these states in M (denoted by M(si) and
M(sj), respectively) is less than ε with ε < 2n:

||M(si)−M(sj)||2 ≤ ε.

If ε is zero, the model learns exactly the same rep-
resentation for both states. El Asri and Trischler
(2019) studied state aliasing in neural DRG mod-
els trained with policy gradients. They showed
that the model depicted in Figure 1 (which will
be described below) went through phases in which
different states were ε-aliased during training.

2.2 Experimental setting
This result was demonstrated using a proxy for di-
alogue response generation: playing simple text-
based games constructed in TextWorld (Côté et al.,
2018). Text-based games are interactive turn-
based simulations that use template-based natural
language to describe the game state, to accept ac-
tions from the player, and to describe consequent
changes in the game environment. Thus, a text-
based game can be viewed as a dialogue between
the player and the environment. The game used
by El Asri and Trischler (2019) to study aliasing
is set in a house with several rooms. To succeed,
the player must perform the following sequence
of actions, called a quest: {go west, take the blue
key, go east, unlock the blue chest with the blue
key, open the blue chest, take the red key, take the
bottle of shampoo, go west, unlock the red chest
with the red key, open the red chest, insert the bot-
tle of shampoo into the red chest}. Notice that to
complete the game, the agent must go west twice.
If state aliasing occurs because of this repetition,
then the agent should struggle to learn to perform
different actions in the two situations. The next
section describes the RNN-based model trained on
this game. We refer to the cited paper for more de-
tails on the experiments.

2.3 Model
At each turn, the model in Figure 1 takes as input
the game-generated text observation of the state
and uses its policy to select (i.e., retrieve) a textual
action to take to make progress in the game. The
observation describes the agent’s current location
(a room) and the various objects in this room. The
sentences in the description are concatenated and
then tokenized into words. The words are mapped
to embeddings using ELMo (Peters et al., 2018),1

and the model encodes the sequence of embed-
dings via LSTM (the LSTM encoder). The model
encodes the quest that it must perform using a sep-
arate LSTM encoder with distinct parameters. The

1We use the small ELMo model available at https://
allennlp.org/elmo.

https://allennlp.org/elmo
https://allennlp.org/elmo


Figure 2: Illustration of state aliasing with a model trained
with policy gradients. Source: El Asri and Trischler (2019)

quest consists of a short text string that describes
the objective, in the form of the sequence of ac-
tions that completes the game. An example of
quest is given in the appendix. The concatenation
of the quest encoding and the observation encod-
ing is passed to a higher-level LSTM called the
history encoder. Its hidden state at turn t repre-
sents the game history up to that turn and gives
the representation for state st, i.e., M(st). At each
turn, the model is provided with a set of candidate
actions to select from. In the RL setting, these ac-
tions are valid actions returned by the game engine
and in the MLE setting, they are randomly sam-
pled from the list of actions present in the data.
Similarly to the observations, it encodes these via
LSTM. The model then replicates the history en-
coding and concatenates it with each action encod-
ing. Passing these concatenated vectors separately
through an MLP yields logits for a softmax func-
tion, which in turn induces a distribution p(at|st)
over the valid actions.

2.4 Observations

El Asri and Trischler (2019) trained their model
with policy gradients to play a TextWorld game
requiring the sequence of 11 actions described
above. They analyzed the hidden states of the
LSTM history encoder and showed that, in certain
cases, the hidden representations corresponding
to two different game states underwent ε-aliasing
during training. The aliased hidden states are pre-
cisely those preceding the go west actions. As
shown on Figure 2, the Euclidean distance be-
tween these two states decreases during training.
When the distance reaches as low as 0.002, the
agent learns to go east when it should have in-
stead inserted the shampoo bottle into the chest.
In other words, when the agent goes west again,
its hidden state looks very similar to the one when

it went west for the first time, and this propagates
to subsequent hidden states such that the agent re-
peats other former actions that came after going
west (e.g., going east). This impedes the agent’s
training and the agent often never recovers from
this aliasing.

The intuition given for this phenomenon is that
the output distribution at separate states with the
same optimal action looks very similar (i.e., close
to 1 for the optimal action and 0 for the oth-
ers). Policy gradients then push the correspond-
ing hidden states together. Experiments suggest
that entropy-based regularization helps mitigate
this issue. Adding an entropy-based bonus to the
loss function forces the output distribution to be
less peaked, so even if the optimal action is the
same for two different states, the policy distribu-
tion might differ enough to represent the states dif-
ferently. Another helpful modification is to train
the RL agent to output not only the policy (as a
distribution over actions) but also a baseline func-
tion representing the expected sum of rewards at
each state. If states share the same optimal actions
but not the same expected sum of rewards, then the
model is forced to learn different representations
to predict the baseline accurately at each state.

It was left as an open question whether the same
sort of aliasing occurs with other training objec-
tives such as classification by maximum likeli-
hood. Below, we investigate this question.

3 A Proxy Dataset for Dialogue

For our experiments we use a dataset of text-based
games built with TextWorld (Côté et al., 2018).
All games share the same environment layout and

Figure 3: Structure of the text-based games used in experi-
ments.

overarching structure, depicted in Figure 3. We
define 10 different quests with lengths between 1
and 11 actions. There is only 1 quest of length 11
and it is similar to the game proposed by El Asri
and Trischler (2019). The other quests are either
subquests of this trajectory or contain slight varia-
tions.



We generate the training set by building games
for all 10 quests with 200 different combinations
of (Color1, Color2, Material1). We define 5 differ-
ent colors (so 20 combinations of Color1, Color2)
and 10 different materials. This process yields
2000 games. The training data consist of the
optimal trajectory for each game, including the
description of the quest and the observations re-
turned by the game engine for the shortest se-
quence of actions that completes the quest. We
build validation and test sets by the same process,
but with distinct colors and shelf materials. We de-
fine 5 unseen colors and 5 unseen materials for the
validation set and likewise for the test set. This
yields 1000 trajectories each for validation and
test. We will make the generation code and dataset
available upon publication. An example trajectory
as well as the list of quests and the lists of colors
and materials are given in the appendix.

We designed this dataset as a simplified proxy
for short, goal-oriented dialogues. The aim is to
require behaviors analogous to those of a dialogue
agent. Such an agent must learn to understand, re-
call, and make use of many distinct entities ref-
erenced by the user, and to adapt to the differ-
ent ways users express themselves; however, there
are clear patterns to dialogue types (e.g., plan-
ning travel) and sub-parts (e.g., booking a flight,
renting a car). Similarly, TextWorld provides a
common game structure with many distinct enti-
ties and combinations. Just like a dialogue system
must remember the entities mentioned by the user
during the dialogue, an agent successful on our
dataset must remember the objects that it has col-
lected (e.g., it is necessary to first get a key to un-
lock a chest). Although the TextWorld engine pro-
duces templated language, it exhibits a degree of
variability. For instance, given the same quest, the
engine may emit “Welcome to TextWorld! Here is
how to play! First thing I need you to do is to head
west...”, or “It’s time to explore the amazing world
of TextWorld! Here is how to play! First stop, try
to venture west...”, or some other slight variant as
the observable description.

We designed the quests so that in the longest
ones, the agent needs to take the same action of
going west twice. Other actions share similar first
tokens, e.g., go west and go east, open Color1
chest and open Color2 chest, etc. This dataset is
thus specifically designed to study whether state
aliasing occurs in similar conditions in max likeli-

hood training and explore solutions that solve this
problem. In the next section, we describe the dif-
ferent models trained with max likelihood and our
experimental observations on state aliasing in this
setting.

4 State Aliasing during Maximum
Likelihood Training

4.1 Models
4.1.1 Retrieval Models
This model was described in Section 2. Note that
the model we train here does not include the value
function head in Figure 1 since this is only used
for RL training.

We optimize this model on the training setD de-
scribed in Section 3 with the following loss func-
tion:

Lret = −
1

|D|
∑

st,at∈D
log pθ(at|st), (1)

where θ are the model parameters and pθ(at|st)
is the probability assigned to the correct action at
from among the candidate actions aj in state st.

We also train a version of this model that uses
the following attention scheme α, which attends
over history encodings hτ based on the action en-
codings:

ατj = softmax(hTτ aj)

h̃j =
∑
τ

ατjhτ ,

where hτ is the hidden state at turn τ ≤ t of the
LSTM history encoder and aj is the encoding vec-
tor of jth candidate action at turn t. We concate-
nate the derived hidden states h̃j with the respec-
tive action encodings, then pass these through the
MLP and softmax that induce the policy distribu-
tion.

4.1.2 Generation Model
To investigate response generation rather than re-
trieval, we replace the MLP+softmax decoder of
the previous model, which selects from a given set
of commands, with an LSTM decoder that gen-
erates each command sequentially, word-by-word.
The LSTM decoder takes as input the previously
generated token (after it has been mapped to its
corresponding ELMo embedding); its hidden state
is initialized with that of the history encoder. To
generate an output token, we take the product of



the decoder’s hidden state at the current time step
and an output embedding matrix, then pass the
result through a softmax. Our best results came
from using the output vocabulary’s corresponding
ELMo embeddings as the output matrix, inspired
by Press and Wolf (2016). As in the retrieval
setup, we also train a version of this sequence-to-
sequence model that uses attention. In this case,
the decoder uses its current hidden representation
to attend over the history encoder’s hidden states
in the usual way (Bahdanau et al., 2014).

Our generation models are trained using
teacher-forcing to minimize the negative log-
likelihood of the utterances observed in D: for
each action utterance in the training set, we sum
the log-likelihoods under the decoder model for
each token in that utterance, where the input to the
decoder is the groundtruth previous token for the
given time step. The loss function is

Lgen = − 1

|D|
∑

st,at∈D

∑
wi∈at

log pθ(wi|wi−1, st),

(2)
where θ are the model parameters and
pθ(wi|wi−1, st) is the probability of the ith
token in the action utterance at taken in state
st. The previous token wi−1 comes from the
groundtruth sequence. We construct the model’s
history encoding, which represents state st as
M(st), by processing the groundtruth trajectory
up to the current turn in the game. Recall that
this is a sequence of textual observations of the
evolving game state; we process it through the
two LSTM encoders detailed in Section 2. During
inference, we use beam search to generate the
next utterance.

Implementation details for the retrieval and gen-
erative models are given in the appendix.

4.2 Results
In Table 1, we report the accuracy of the different
models in terms of exact match on the test set. The
exact match score increments by 1 if the retrieved
or generated action matches the ground truth ac-
tion word for word. This is not the best way to
evaluate DRG but it makes sense in the case of
TextWorld games since the parser only accepts a
limited set of sentences. To relax the evaluation,
we also compute action precision on the test set:
this is defined similarly to the exact match met-
ric, except that we we ignore color and material
adjectives. Action precision thus measures only

whether commands are correct in terms of verbs
and objects.

Model Accuracy Action
Precision

Retrieval 0.612 0.675
Retrieval + attention 0.711 0.801

Generation + attention 0.262 0.478

Table 1: Accuracy and action precision of the different
models trained on text-based games.

4.2.1 State Aliasing
To identify state aliasing in models, we inspect the
Euclidean distance between hidden states for cer-
tain examples from the test set. Let us consider
the following quest: {go west, take Color2 key,
go east, unlock Color2 chest with the Color2 key,
open Color2 chest, take Color1 key, take the bot-
tle of shampoo, go west, unlock Color1 chest with
Color1 key, open Color1 chest, insert the bottle of
shampoo into Color1 chest}. Several actions are
repeated, namely going west, unlocking a chest,
and opening a chest. We look at the Euclidean
distance between hidden states when the LSTM
history encoder processes this trajectory up to the
point where it must perform the last action. This
game is similar to the one used by El Asri and
Trischler (2019) to study state aliasing in the RL
setting. They observed that states often became
aliased after the agent should go west for the sec-
ond time.

With the retrieval model, we observe similar be-
haviour: whenever the action of going east or go-
ing west is available to the agent at the end of the
game, it consistently chooses this incorrect action
over all others, with a probability close to 1. Fo-
cusing on these failure cases, we show in Figure 4
that states sE , sW , which correspond to going east
and going west for the second time, respectively,
are consistently the closest in Euclidean space,
with an average distance of 0.00013. The aver-
age distance from sW to all other previous hidden
states is 0.060. Thus, for all trajectories where the
agent incorrectly goes east or west at the end of the
game, sE is the closest hidden state to sW by sev-
eral orders of magnitude. Following states sE and
sW , the agent must unlock and open a chest. Since
the agent must repeat the same sequence of ac-
tions, it represents the immediately previous states
similarly. This aliasing has downstream effects on



Figure 4: Illustration of state aliasing after max likelihood training. Left: retrieval model without attention, right:
retrieval model with attention.

the model’s trajectory, leading to its failure at the
final game state: it elects to go west or to go east
rather than placing the bottle. Go actions occur
after unlocking and opening the earlier chest, and
aliasing locks the model into looping behaviors.

We observe the same phenomenon in the re-
trieval model with attention: sW is always clos-
est to sE in Euclidean distance. On average, this
distance is 0.0056; the average distance to other
states is 1.066. In addition, we observe the same
failure mode: whenever the agent has the choice
to go east or go west at the end, it does so.

Interestingly, the generation model’s perfor-
mance suffers differently: the model tends to pro-
duce the go west action much more frequently, in-
cluding when it should produce the {take Color2
key} or the {open Color2 chest} actions. We sus-
pect that the second occurrence is due to state
aliasing with the first going west action. As for
the first occurrence, this seems to suggest that
encoder-decoder RNN models are prone to state
aliasing based on temporal distance (the agent
goes west and then repeats the action of going
west). In general, the behaviors of this more com-
plicated model are harder to interpret but show
symptoms of state aliasing.

5 Augmenting the Training Signal with
Future Feature Vectors

5.1 Motivation

State aliasing is a problem in partially-observable
environments: agents with limited sensors might
not always be able to differentiate distinct states.

This problem has therefore been studied exten-
sively. In our case, states are aliased in the hidden
space rather than the sensor space, but we can ap-
ply ideas from the partially-observable literature to
mitigate the problem. (McCallum, 1996) proposed
to learn a representation of an RL agent’s state
based on its expected sum of rewards. In the deep
reinforcement learning literature, this corresponds
to approaches like DQN (Mnih et al., 2013), where
the RL agent’s representation is based on the es-
timated Q-values or on the estimated values of
states given by models trained to predict the next
best action. In this last setting, experiments by
(El Asri and Trischler, 2019) suggest that training
an RNN model subject to state aliasing to predict
states’ values (in addition to the next action) helps
to prevent aliasing.

We propose a related approach for the maxi-
mum likelihood setting. Dialogue datasets often
do not come with ratings, so there is no natural re-
ward function for training a dialogue agent. How-
ever, we can adapt algorithms from the inverse re-
inforcement learning literature to learn a reward
function from data, assuming that the data con-
sists of expert trajectories. In particular, the Struc-
tured Classification Inverse Reinforcement Learn-
ing (SCIRL, Klein et al., 2012) algorithm enables
learning a reward function without knowing the
true environment model nor having access to an
environment simulator. We describe this algo-
rithm in the next section.



Algorithm 1: Expert feature expectation estimation
input : A dataset of history-response pairs D = {(si, ai = πE(si))1≤i≤N}
output: An estimation µ̂πE (s) of the expert feature expectation µπE (s) at each state s

1 Let st be dialogue history at turn t. Compute the feature vector φ(st) = (φ1(st), ..., φp(st)) as
φ(s) = 1

t

∑
t′≤t emb(st′);

2 Compute µ̂πE (s) through SARSA updates on D such that ∀ i, µ̂iπE (s) is the value function for the
reward φi(s) and the expert policy πE .

5.2 SCIRL
SCIRL relies on a linear parameterization of the
reward function Rθ = θTφ(s) where θ are pa-
rameters and φ(s) = (φ1(s), ..., φp(s))

T is a fea-
ture vector of p basis functions φi. Let us de-
fine a policy π as a mapping from a state-action
pair (s, a) to a probability π(s, a) ∈ [0, 1] and
a greedy policy π as a mapping from states to
actions: π(s) = a. Given this parameteriza-
tion, the Q function for a policy π evaluated with
this reward function is Qπθ (s, a) = θTµπ(s, a),
where µπ(s, a) is the feature expectation vector:
µπ(s, a) = E[

∑
t≥0 γ

tφ(st) | S0 = s,A0 = a, π].
The SCIRL algorithm proceeds as follows.

Suppose we have a dataset D of state action pairs
collected with a greedy expert policy πE : D =
{(si, ai = πE(si))1≤i≤N}. In our case, states
are dialogue histories and actions are dialogue
responses. These pairs are collected from hu-
man conversations or, in TextWorld, by generat-
ing game trajectories. Suppose that we also have
an estimate of the expert feature expectation vec-
tor µπE and access to a multi-class classification
(MC2 for short) algorithm. We use this MC2 al-
gorithm to learn a decision rule gθc(s) = a =
argmaxa′ θ

T
c µ

πE (s, a′) ∀ s, a ∈ D. In other
words, we learn parameters θc such that the ac-
tions in the dataset are the optimal actions given
the score function θTc µ

πE (s, a). The reward func-
tion Rθc(s) = θTc µ

πE (s, a) is then a reward func-
tion under which the greedy expert policy πE is
optimal; i.e., this policy maximizes the expected
sum of rewards for all states s.

5.3 Using Expert Feature Expectations to
Train Dialogue Models

In the case of dialogue, we showed that states be-
come aliased when the outputs for those states
are similar. We could compute a reward as in
SCIRL, then use this to compute expected sums
of rewards at each state, then predict the expected
value using our model. However, we only need

an indication of which states should be differenti-
ated. The expert feature expectation vector is suf-
ficient for this purpose. Indeed, this vector cap-
tures the sum of features that will be observed
after visiting a state. If states lead to different
outcomes, then their feature expectations should
be different. The combination of the expecta-
tion vector and the parameters θc gives an extra
indication of which actions are optimal, but be-
cause we are training with MLE rather than RL,
the optimal actions should be learned through the
MLE objective. We thus propose only to estimate
the expert feature expectation vector and have our
model predict this quantity at each state. We de-
fine the expert feature expectation for a state s as
µπE (s) = E[

∑
t≥0 γ

tφ(st) | S0 = s, πE ]. This
approach relates to the predictive state represen-
tation literature where states are built to hold suf-
ficient information to predict the future (Downey
et al., 2017).

Klein et al. (2012) observed that ∀i, µπEi (s)
corresponds to the value function of πE evaluated
with the reward function φi: µ

πE
i (s) = V π

φi
(s) =

E[
∑

t≥0 γ
tφi(s) | S0 = s, πE ]. We will use this

observation to compute an estimate of the expert
feature expectation vector. This approach is de-
scribed in Algorithm 1. The first step consists of
computing the feature vector φ, as the SCIRL al-
gorithm assumes φ is given. This vector must be a
meaningful representation of the state, which is in
our case the dialogue history. We use a very sim-
ple representation that averages the embeddings
of all past observations: the feature vector φ(s)
for state s is the average sentence embedding for
all sentences preceding time t, while the sentence
embeddings are the average of a sentence’s word
embeddings. This representation of dialogue his-
tory only requires access to pre-trained word em-
beddings. The second step of the algorithm com-
putes the estimates µ̂πE (s). For this, we com-
pute the value functions V πE

φi
for all i. We use

the SARSA algorithm (Rummery and Niranjan,



1994) to compute these estimates. We train a
model MS

θs
with the following loss function: L =∑

s,s′∈D

(∑
i

(
φi(s) + γMS

θs
(s′)−MS

θs
(s)
)2)

.

SARSA updates are equivalent to Q-learning
updates, except that they estimate the value of the
policy used for data collection instead of estimat-
ing the optimal policy. We define our estimator
µ̂πE (s) =MS

θs
(s) ∀ s.

We modify our retrieval and generative models
to incorporate a head that predicts the output of
MS at each state s. We change the learning objec-
tives of these models by adding the mean squared
error loss,

Lsar =
1

D

∑
s∈D

(
MS(s)−M(s)

)2
, (3)

where M indicates either the generative or the
retrieval model. We combined losses as fol-
lows: L = λMLE Lret + λsar Lsar and L =
λMLE Lgen + λsar Lsar for the retrieval and gen-
erative models, respectively. We achieved the best
results with λMLE = 0.1 andLsar = 1000 in both
cases. Further implementation details are given in
the appendix.

6 Results

Results on the test set are given in Table 2. A first
observation is that adding expert feature expecta-
tions improves the performance significantly for
both the retrieval and the generative models. In
the retrieval case, accuracy improves by more than
20% and action precision improves by 18.6%. No-
tably, all the instances of state aliasing illustrated

Model Accuracy Action
Precision

Ret 0.612 0.675
Ret + attn 0.711 0.801
Ret + feat exp 0.915 0.987
Ret + attn + feat exp 0.733 0.801

Gen + attn 0.262 0.478
Gen + feat exp 0.342 0.967
Gen + attn + feat exp 0.273 0.368
Gen + feat exp + copy 0.799 0.828
Gen + attn + copy 0.465 0.481

Table 2: Accuracy and action precision of the different
models trained on text-based games. Ret is the retrieval
model and Gen is the generative model. feat exp stands
for feature expectations and attn stands for attention.

on Figure 4 were resolved by this solution: when
the augmented model had the possibility of going
east at the end of the longest games, for instance,
it never chose this option.

Adding feature expectations improves the accu-
racy of the generative model by 8% and its action
precision by 49%. The high action precision sug-
gests that low accuracy is a result of poor gener-
alization to unseen entities. To counter this, we
added a copy mechanism similar to that of (Man-
ning and Eric, 2017). This mechanism enables the
model either to generate a word from the vocab-
ulary (of size 53 in our dataset) or to point to a
word in the dialogue history. Similarly to (Man-
ning and Eric, 2017), we only allow the model to
copy entities. In a goal-oriented dialogue dataset,
entities are given by a knowledge base. In our
case, we assume that we have a knowledge base
of game entities, i.e., chest colors and shelf mate-
rials. We also limit copying to the last dialogue
turn, which is sufficient since the TextWorld ob-
servations always describe all the elements present
in the room where the agent is currently located.
Adding this copying mechanism improved accu-
racy by 46% while maintaining a high action pre-
cision. This confirms that the generation model’s
low accuracy results mostly from poor generaliza-
tion to unseen entities. Note that combining the
attention schemes with the expert feature expec-
tation prediction did not yield the best results in
our experiments. We observed that in this case,
even though hidden states were de-aliased, atten-
tion states caused aliasing and an increased num-
ber of failures.

Our results are encouraging and show how state
aliasing can damage the performance of a model.
In both generative and retrieval cases, gains of
more than 18% in action precision are made by
addressing state aliasing through estimation of ex-
pert feature expectations.

7 Conclusion

This work investigated state aliasing in RNNs in
the maximum likelihood setting, building on re-
lated work in the RL setting. We highlighted that
RNNs are prone to aliasing states that share simi-
lar optimal actions. We augmented the maximum
likelihood objective with a loss that encourages the
model to represent states based on expected di-
alogue futures. We showed that this augmented
objective mitigates state aliasing and significantly



improves performance on a dataset of generated
text-based games.
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A Implementation Details

Retrieval and generative models The ELMo
embedding layer outputs vectors of size 256 for
each word. The LSTM encoder, the LSTM his-
tory encoder, and the MLP use hidden states of
size 128. The LSTM encoder and the LSTM his-
tory encoder both have one layer of LSTM units.
The MLP that preceded the softmax operator uses
tanh activation in its hidden layer. We use Adam
(Kingma and Ba, 2014) with a learning rate of
0.002 and we clip the gradient norm to 10. The
retrieval model is given 10 candidate actions to se-
lect from. These actions are uniformly sampled
from the set of all possible actions.

The decoder of the generative model uses hid-
den states of size 256 and outputs words which
belong to a vocabulary of size 53. Beam search
is performed with a beam of width 4. We use
Adam (Kingma and Ba, 2014) with a learning rate
of 0.0001 and we clip the gradient norm to 10
for both encoder and decoder. All our models are
trained on batches of size 32.

Expert feature expectation model We used
ELMo embeddings of size 256 to compute the
feature vector φ. The model MS is a multi-
layer perceptron with two hidden layers of size
256 and tanh activation. We trained this model
on the TextWorld dataset with batches of size 64.
We used stochastic gradient descent with a learn-
ing rate of 1.10−7. We chose model parameters
through early stopping.

B Example of trajectory in the
TextWorld dataset

Quest I hope you’re ready to go into rooms and
interact with objects, because you’ve just entered
TextWorld! Your first objective is to make an ef-
fort to travel west. After that, take the red key from
the Bathroom. Then, head east. Then, Insert the
red key into the red chest’s lock to unlock it. And
then, ensure that the red chest is open. And then,
take the blue key from the red chest within the
Bedroom. After that, recover the shampoo from
the red chest inside the Bedroom. After that, go
west. After that, make sure that the blue chest in
the Bathroom is unlocked with the blue key. And
then, make it so that the blue chest is open. Af-
ter that, you can put the shampoo inside the blue
chest within the Bathroom. And if you do that,
you’re the winner!

Trajectory -= Bedroom =- You’ve just walked
into a Bedroom. You can make out a red chest.
There is an unguarded exit to the west.
go west
-= Bathroom =- You find yourself in a Bathroom.
An ordinary kind of place. You can make out a
locked usual looking blue chest in the corner. You
make out a wooden shelf. The wooden shelf is typ-
ical. Unfortunately, there isn’t a thing on it. There
is an exit to the east. Don’t worry, it is unblocked.
There is a red key on the floor.
take red key
-= Bathroom =- You find yourself in a Bathroom.
An ordinary kind of place. You can make out a
locked usual looking blue chest in the corner. You
make out a wooden shelf. The wooden shelf is typ-
ical. Unfortunately, there isn’t a thing on it. There
is an exit to the east. Don’t worry, it is unblocked.
go east
-= Bedroom =- You’ve just walked into a Bed-
room. You can make out a red chest. There is
an unguarded exit to the west.
unlock red chest with red key
-= Bedroom =- You’ve just walked into a Bed-
room. You can make out a red chest. There is
an unguarded exit to the west.
open red chest
-= Bedroom =- You’ve just walked into a Bed-
room. You can make out a red chest. The red
chest contains a blue key and a shampoo. There
is an unguarded exit to the west.
take blue key from red chest
-= Bedroom =- You’ve just walked into a Bed-
room. You can make out a red chest. The red chest
contains a shampoo. There is an unguarded exit to
the west.
take shampoo from red chest
-= Bedroom =- You’ve just walked into a Bed-
room. You can make out a red chest. The red chest
is empty! This is the worst thing that could pos-
sibly happen, ever! There is an unguarded exit to
the west.
go west
-= Bathroom =- You find yourself in a Bathroom.
An ordinary kind of place. You can make out a
locked usual looking blue chest in the corner. You
make out a wooden shelf. The wooden shelf is typ-
ical. Unfortunately, there isn’t a thing on it. There
is an exit to the east. Don’t worry, it is unblocked.
unlock blue chest with blue key
-= Bathroom =- You find yourself in a Bathroom.



An ordinary kind of place. You can make out a
closed usual looking blue chest in the corner. You
make out a wooden shelf. The wooden shelf is typ-
ical. Unfortunately, there isn’t a thing on it. There
is an exit to the east. Don’t worry, it is unblocked.
open blue chest
-= Bathroom =- You find yourself in a Bathroom.
An ordinary kind of place. You can make out an
opened usual looking blue chest in the corner. The
blue chest is empty! What a waste of a day! You
make out a wooden shelf. The wooden shelf is typ-
ical. Unfortunately, there isn’t a thing on it. There
is an exit to the east. Don’t worry, it is unblocked.
insert shampoo into blue chest

C Details of the TextWorld dataset

C.1 List of quests

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest,
take shampoo from Color2 chest, go west,
unlock Color1 chest with Color1 key, insert
shampoo into Color1 chest

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest, go
west, unlock Color1 chest with Color1 key

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take shampoo from Color2 chest

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take shampoo from Color2 chest, go
west, put shampoo on Material1 shelf

• go west

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest, go
west, unlock Color1 chest with Color1 key,
insert Color2 key into Color1 chest

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest, go
west, unlock Color1 chest with Color1 key,
insert Color1 key into Color1 chest

• go west, take Color2 key, go east, unlock
Color2 chest with Color2 key, open Color2
chest, take Color1 key from Color2 chest, go
west, put Color1 key on Material1 shelf

C.2 List of entities
Training Data
Colors: blue, red, brown, white, black
Materials: wooden, gold, silver, bronze, copper,
marble, iron, platinum, oak, ebony

Validation Data
Colors: purple, pink, orange, cyan, ochre
Materials: plastic, fabric, cardboard, brick, stone

Test Data
Colors: grey, yellow, vermilion, crimson, green
Materials: metal, clay, ceramic, paper, diamond


